CMIP Faculty

Founded in 2009 at Duke University, the Center for Metamaterials and Integrated Plasmonics (CMIP) consists of a group of researchers dedicated to the exploration of artificially structured materials and their potential impact across a broad range of technologies. At CMIP, researchers study the fundamentals of metamaterials, including developing design techniques and strategies, as well as methods for the precise prediction and characterization of metamaterial properties. CMIP researchers consider the use of metamaterials not only across the electromagnetic spectrum—from microwaves to optics—but also across different branches of physics, including acoustics and fluid flow. CMIP researchers are also at the forefront of innovation and entrepreneurship, with several companies now founded on CMIP inventions and discovery.

Since 2000, over 7,500 academic publications on metamaterials have been published at over 500 universities. Duke University, led by its Center for Metamaterials and Integrated Plasmonics, heads the pack with 133 publications.

Nan M. Jokerst

J. A. Jones Professor of Electrical and Computer Engineering

Positions: J.A. Jones Distinguisted Professor of Electrical and Computer Engineering, a Philip Baugh Scholar, and Professor of Electrical and Computer Engineering at Duke University. ECE at Georgia Institute of Technology; Research Director of the NSF ERC in Electronic Packaging Research; Researcher in the Microelectronics Research Center at Georgia Tech.

Research Interests: Her research work focuses on integrated nanosystems and microsystems with an emphasis on photonic integration for sensing and telecommunications systems.

Known For: Implementing (SMIF) The Shared Materials Instrumentation Facility at Duke as an interdisciplinary shared resource providing researchers with high quality and cost effective access to advanced materials characterization and fabrication capabilities. In addition to discovering solutions that could prove particularly useful in battery-powered computers, such as handheld imaging and diagnostic devices with headway in the quest to control the beams of light generated by tiny lasers.

Goldflam, MD; Liu, MK; Chapler, BC; Stinson, HT; Sternbach, AJ; McLeod, AS; Zhang, JD; Geng, K; Royal, M; Kim, B-J; Averitt, RD; Jokerst, NM; et. al., Voltage switching of a VO2 memory metasurface using ionic gel, Applied Physics Letters, vol 105 no. 4 (2014), pp. 041117-041117.

Dhar, S; Miller, DM; Jokerst, NM, High responsivity, low dark current, heterogeneously integrated thin film Si photodetectors on rigid and flexible substrates., Optics Express, vol 22 no. 5 (2014), pp. 5052-5059.

Tsai, YJ; Larouche, S; Tyler, T; Llopis, A; Royal, M; Jokerst, NM; Smith, DR, Arbitrary birefringent metamaterials for holographic optics at λ = 1.55 μm., Optics Express, vol 21 no. 22 (2013), pp. 26620-26630.

Moore, C; Cevikbas, F; Pasolli, HA; Chen, Y; Kong, W; Kempkes, C; Parekh, P; Lee, SH; Kontchou, NA; Yeh, I; Jokerst, NM; Fuchs, E; Steinhoff, M; Liedtke, WB, UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling., Proceedings of the National Academy of Sciences of USA, vol 110 no. 34 (2013), pp. E3225-E3234.

Tsai, Y-J; Tyler, T; Larouche, S; Llopis, A; Royal, M; Jokerst, NM; Smith, DR, Metamaterial polarization multiplexed gratings, CLEO: QELS_Fundamental Science, CLEO:QELS FS 2013 (2013).

Maiken Mikkelsen

Assistant Professor of ECE and Physics

Positions Held: Assistant Professor of Electrical and Computer Engineering, Assistant Professor of Physics

Research Interests: Probe and control interactions between light and matter in artificially created nanoscale structures, in particular, materials with sub-10 nm dimensions and quantum-confined solid-state systems. Mikkelsen’s group specializes in ultrafast optical experiments in the visible and near-IR and fabrication of highly-engineered nanostructures with the goal to elucidate properties emerging at the nanoscale and pave the way to harness these to transform existing and enable new technologies. Recent interests include control of radiative properties of emitters embedded in plasmonic nanoantennas, quantum plasmonics, cavity QED, electron spin dynamics, and two-dimensional semiconductor materials.

Known For: Mikkelsen is best known for the first demonstration of nondestructive readout of a single electron spin (Science 2006) and ultrafast manipulation of a single spin using all-optical techniques (Science 2008). More recently, she is becoming known for extreme radiative decay engineering using plasmonic nanoantennas (Nature Photonics 2014).

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine & X. Zhang, Plasmonic Luneburg and Eaton lenses, Nature Nanotechnology. 6, 151–155 (2011).

J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, Picosecond Coherent Optical Manipulation of a Single Electron Spin in a Quantum Dot, Science. 320 (5874), 349-352 (2008).

M. H. Mikkelsen, J. Berezovsky, N. G. Stoltz, L. A. Coldren & D. D. Awschalom, Optically detected coherent spin dynamics of a single electron in a quantum dot, Nature Physics 3, 770 - 773 (2007).

J. Berezovsky, M. H. Mikkelsen, O. Gywat, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot, 314 (5807), 1916-1920, (2006).

David R. Smith

James B. Duke Professor of Electrical and Computer Engineering

Positions: James B. Duke Distinguished Professor of ECE and Department Chair; Adjunct Professor, U. C. San Diego; Visiting Professor, Physics, Imperial College, London; Affiliate Professor, ECE University of Washington; Strategic Director, Metamaterials Commercialization Center, Intellectual Ventures

Research Interests: The theory, simulation and characterization of unique electromagnetic structures, including photonic crystals and metamaterials. Smith’s group focuses on both fundamental science and applications of electromagnetic metamaterials, including structures at microwave and terahertz frequencies, as well as infrared and visible wavelengths. Currently Smith is working to combine computational imaging techniques with metamaterials for next generation security scanners.

Known For: Major milestone experiments in the metamaterials field: the first demonstration of a metamaterial with negative refractive index in 2000, and the first “invisibility cloak” in 2006 (with Cummer). Smith is one of the most well-known researchers in physics and electrical engineering worldwide, having been recognized in 2009 and again in 2014 by Reuters as a “Highly Cited Researcher.”

Watts, CM; Shrekenhamer, D; Montoya, J; Lipworth, G; Hunt, J; Sleasman, T; Krishna, S; Smith, DR; Padilla, WJ, Terahertz compressive imaging with metamaterial spatial light modulators, Nature Photonics, vol 8 no. 8 (2014), pp. 605-609 [10.1038/nphoton.2014.139] [abs].

Degiron, A; Smith, DR, One-way glass for microwaves using nonreciprocal metamaterials, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, vol 89 no. 5 (2014) [10.1103/PhysRevE.89.053203] [abs].

Ciracì, C; Chen, X; Mock, JJ; McGuire, F; Liu, X; Oh, S-H; Smith, DR, Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers, Applied Physics Letters, vol 104 no. 2 (2014), pp. 023109-023109 [10.1063/1.4861849] [abs].

Lipworth, G; Ensworth, J; Seetharam, K; Huang, D; Lee, JS; Schmalenberg, P; Nomura, T; Reynolds, MS; Smith, DR; Urzhumov, Y, Magnetic metamaterial superlens for increased range wireless power transfer., Scientific Reports, vol 4 (2014) [10.1038/srep03642] [abs].

Willie Padilla


Positions Held: Director of Duke Engineering Research Institute, Professor of Electrical & Computer Engineering

Research Interests: I am interested in the investigation of the infrared, optical and magneto-optical properties of novel materials. The goal is to demonstrate high performance materials for novel terahertz, infrared and optical devices. Both frequency domain and time domain spectroscopic methods are utilized to carry out this task and include Fourier transform and terahertz time domain spectroscopy.

Known For: Terahertz spectroscopy, Perfect absorbers, Dynamic tunable metamaterials, Imaging

Watts, CM; Shrekenhamer, D; Montoya, J; Lipworth, G; Hunt, J; Sleasman, T; Krishna, S; Smith, DR; Padilla, WJ, Terahertz compressive imaging with metamaterial spatial light modulators, Nature Photonics 8, 605–609 (2014).

Shrekenhamer, D; Montoya, J; Krishna, S; Padilla, WJ, Four-Color Metamaterial Absorber THz Spatial Light Modulator, Advanced Optical Materials 1, 905 (2013).

Liu, X; Padilla, WJ; Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials, Advanced Optical Materials 1, 559 (2013).

Shrekenhamer, D; Chen, W; Padilla, WJ, Liquid Crystal Tunable Metamaterial Absorber, Physical Review Letters 110, 177403 (2013).

Steven A. Cummer

Bass Fellow

Positions held: Professor, Electrical and Computer Engineering

Research Interests: My current research spans different aspects of applied electromagnetics and wave propagation, with a common thread of exploiting the interaction of wave fields with complicated structures and environments to learn things about the source or structure and environment. Specific areas of active research are lightning and high altitude effects, electromagnetic and acoustic metamaterials, upper atmosphere remote sensing and space and planetary physics.

Known for: The first numerical simulation of electromagnetic cloaking in 2006 (with Smith), the first theoretical demonstration of the possibility of acoustic cloaking (2007); and acoustic metamaterial experiments demonstrating a variety of material properties. Cummer is also an active researcher in the fields of lightning and atmospheric electricity, where he uses much of the same expertise in electromagnetic wave propagation in complex environments and media.

Zigoneanu, L., B.-I. Popa, and S. A. Cummer, Three-dimensional broadband omnidirectional acoustic ground cloak, Nature Materials (2014).

Popa, B.-I., L. Zigoneanu, and S. A. Cummer, Experimental acoustic ground cloak in air, Phys. Rev. Lett., v. 106, 253901 (2011).

Cummer, S. A., and D. Schurig, One path to acoustic cloaking, New Journal of Physics, v. 9, 45 (2007).

Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, Full-wave simulations of electromagnetic cloaking structures, Physical Review E, 74, 036621 (2006).

Cummer, S. A., Simulated causal subwavelength focusing by a negative refractive index slab, Applied Physics Letters, v. 82, p. 1503–1505 (2003).

Stephane Larouche

Assistant Research Professor

Position: Research Faculty, Electrical and Computer Engineering at Duke University.

Research Interests: Various aspects of linear and nonlinear metamaterials and plasmons.

Known For: Dr. Larouche has developed advanced methods for the design of optical filters with arbitrary refractive indices. He has developed a retrieval method for the characterization of nonlinear metamaterials.

de Denus-Baillargeon, M-M; Schmitt, T; Larouche, S; Martinu, L, Design and fabrication of stress-compensated optical coatings: Fabry–Perot filters for astronomical applications, Applied Optics. 53, 2616 (2014).

Tsai,Y-J; Larouche, S; Tyler, T; Llopis, A.; Royal, M; Jokerst, NM; Smith, DR, Arbitrary birefringent metamaterials for holographic optics at λ = 155 μm, Optics Express. 21, 26620 (2013).

Larouche, S; Tsai, Y-J; Tyler, T; Jokerst, NM; Smith, DR, Infrared metamaterial phase holograms, Nature Materials. 11, 450 - 454 (2012).

Larouche, S; Smith, DR, Optics: Nanotube holograms, Nature. 491, 47 - 48 (2012).

Yaroslav Urzhumov

Adjunct Assistant Professor of Electrical and Computer Engineering

Positions: Adjunct Research Faculty member in the Department of Electrical and Computer Engineering. Metamaterials Scientist at Intellectual Ventures

Research Interests: Applied physicist with broad interests and in-depth theory and design expertise. Dr. Urzhumov specializes in developing analysis, design and optimization techniques for problems involving multiple physical processes, including hybrid electromagnetic, acoustic and hydrodynamic metamaterials.

Known For: Developing and demonstrating novel metamaterial-based technologies. Developing all-dielectric cloaking,a highly effective, radar cloak that can be made using a hobby-level 3D printer. Dr. Urzhumov developed homogenization theories and numerical techniques for effective material property predictions, and continues to work on efficient numerical optimization methods for micro- and nanostructured media.

Lipworth, G; Ensworth, J; Seetharam, K; Huang, D; Lee, JS; Schmalenberg, P; Nomura, T; Reynolds, MS; Smith, DR; Urzhumov, Y, Magnetic metamaterial superlens for increased range wireless power transfer., Scientific Reports, 4 (2014).

Ciraci, C; Urzhumov, Y; Smith, DR, Far-field analysis of axially symmetric three-dimensional directional cloaks, Optics Express, vol 21 no. 8 (2013), pp. 9397-9406.

Shin, D; Urzhumov, Y; Jung, Y; Kim, K; Smith, DR, Adjustable metamaterial cloaking using an elastic crystal, Asia-Pacific Microwave Conference Proceedings, APMC (2013), pp. 331-332.

Driscoll, T; Urzhumov, Y; Landy, N; Basov, D; Smith, DR, Dielectric metamaterials and composites in the age of 3D printing, and directional cloaking, 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, METAMATERIALS 2013 (2013), pp. 361-363.

Urzhumov, Y; Landy, N; Driscoll, T; Basov, D; Smith, DR, Thin low-loss dielectric coatings for free-space cloaking, Optics Letters, vol 38 no. 10 (2013), pp. 1606-1608.

Daniel Gauthier

Bass Fellow

Position: Robert C. Richardson Professor of Physics at the Duke University Department of Physics,    Bass Fellow and Professor in the Department of Electrical and Computer Engineering. He is a Fellow of the American Physical Society and the Optical Society of America.

Research Interests: A broad range of topics in the fields of nonlinear and quantum optics, and nonlinear dynamical systems. Another recent interest is the development of the world's most sensitive all-optical switch. Currently, they have observed switching with an energy density as low as a few hundred yoctoJoules per atomic cross-section, indicating that the switch should be able to operate at the single-photon level. The experiments use a quasi-one-dimensional ultra-cold gas of rubidium atoms as the nonlinear material. They take advantage of a one-dimensional optical lattice to greatly increase the nonlinear light-matter interaction strength. His specialties include, atomic, molecular, and optical physics, experimental condensed matter physics, nonlinear dynamics and complex systems

Known For: Highly nonlinear light-matter interactions at both the classical and quantum levels

Poutrina, E.; Ciracì, C.; Gauthier, D.J.; Smith, D.R, Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film, Opt. Express 20, 11005 (2012).

Rosin, DP; Rontani, D; Gauthier, DJ, Synchronization of coupled Boolean phase oscillators, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, vol 89 no. 4 (2014).

Aragoneses, A; Sorrentino, T; Perrone, S; Gauthier, DJ; Torrent, MC; Masoller, C, Experimental and numerical study of the symbolic dynamics of a modulated external-cavity semiconductor laser, Optics Express, vol 22 no. 4 (2014), pp. 4705-4713.

Christensen, BG; McCusker, KT; Gauthier, DJ; Kumor, DR; Chandar, V; Kwiat, PG, Higher-dimensional quantum cryptography (2014).

Alex Baron

Adjunct Assistant Research Professor

Positions: Adjunct Assistant Research Professor in the Department of Electrical and Computer Engineering at Duke University. Assistant Professor at the University of Bordeaux, France.

Research Interests: Nonlinear Metamaterials and Plasmonics, Self-Assembled Metamaterials, Disorder in Photonic Crystal Waveguides.

Known for: Nonlinear optics and disorder in slow-light photonic crystal waveguides, mesuring the nonlinear optical properties of gold using surface plasmon polaritons, highly efficient and unidirectional surface plasmon launchers, 3D self-assembled optical metamaterials.

P Bowen, A Baron, and DR Smith, “Generalized theory of spectrally selective perfect absorbers”, soumis à Physical Reviw Letters (2015).

Z Huang, A Baron, S Larouche, C Argyropoulos, and DR Smith, “Optical bistability with film-coupled metasurfaces”, soumis à Optics Letters (2015).

L Peres, A Baron, and S Fasquel, “Passive absorption in a classical photonic crystal-based organic solar cell”, Optics Letters 40, pp. 3161-3164 (2015).

A Baron, TB Hoang, C Fang, MH Mikkelsen, and DR Smith, “Self-action of surface plasmon polaritons”, Physical Review B 91, 195412 (2015).

A Baron, S Larouche, DJ Gauthier, and DR Smith, “Scaling of the nonlinear response of the surface plasmon polariton at a metal/dielectric interface”, Journal of the Optical Society of America B 32, pp. 9-14 (2015).