Smith is one of the most well-known researchers in physics and electrical engineering worldwide, having been recognized in 2009 and again in 2014 by Reuters as a “Highly Cited Researcher.” He specializes in the theory, simulation and characterization of unique electromagnetic structures, including photonic crystals and metamaterials. Smith’s key experiments are major milestones in the metamaterials field—including the first demonstration of a metamaterial with negative refractive index in 2000, and the first “invisibility cloak” in 2006, co-authored with ECE professor Steve Cummer. Smith’s group focuses on both fundamental science and applications of electromagnetic metamaterials, including structures at microwave and terahertz frequencies, as well as infrared and visible wavelengths. Currently Smith is working to combine computational imaging techniques with metamaterials for next generation security scanners.
Watts, CM; Shrekenhamer, D; Montoya, J; Lipworth, G; Hunt, J; Sleasman, T; Krishna, S; Smith, DR; Padilla, WJ, Terahertz compressive imaging with metamaterial spatial light modulators, Nature Photonics, vol 8 no. 8 (2014), pp. 605-609 [10.1038/nphoton.2014.139] [abs].
Degiron, A; Smith, DR, One-way glass for microwaves using nonreciprocal metamaterials, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, vol 89 no. 5 (2014) [10.1103/PhysRevE.89.053203] [abs].
Ciracì, C; Chen, X; Mock, JJ; McGuire, F; Liu, X; Oh, S-H; Smith, DR, Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers, Applied Physics Letters, vol 104 no. 2 (2014), pp. 023109-023109 [10.1063/1.4861849] [abs].
Lipworth, G; Ensworth, J; Seetharam, K; Huang, D; Lee, JS; Schmalenberg, P; Nomura, T; Reynolds, MS; Smith, DR; Urzhumov, Y, Magnetic metamaterial superlens for increased range wireless power transfer., Scientific Reports, vol 4 (2014) [10.1038/srep03642] [abs].