Reconfigurable core-satellite nanoassemblies as molecularly-driven plasmonic switches

TitleReconfigurable core-satellite nanoassemblies as molecularly-driven plasmonic switches
Publication TypeJournal Article
Year of Publication2008
AuthorsD..S. Sebba, J.J. Mock, D.R. Smith, T..H. LaBean, A..A. Lazarides
JournalNano Letters
ISBN Number1530-6984
Accession NumberWOS:000257504500004

Molecular control of plasmon coupling is investigated in sub-100 nm assemblies composed of 13 nm gold "satellite" particles tethered by reconfigurable DNA nanostructures to a 50 nm gold "core" particle. Reconfiguration of the DNA nanostructures from a compact to an extended state results in blue shifting of the assembly plasmon resonance, indicating reduced interparticle coupling and lengthening of the core-satellite tether. Scattering spectra of the core-satellite assemblies before and after reconfiguration are compared with spectra calculated using a structural model that incorporates the core/satellite ratio determined by TEM imaging and estimates of tether length based upon prior measurements of interparticle separation in DNA linked nanoparticle networks. A strong correspondence between measured and simulated difference spectra validates the structural models that link the observed plasmon modulation with DNA nanostructure reconfiguration.