Nanoparticle–Film Plasmon Ruler Interrogated with Transmission Visible Spectroscopy

TitleNanoparticle–Film Plasmon Ruler Interrogated with Transmission Visible Spectroscopy
Publication TypeJournal Article
Year of Publication2014
AuthorsR.T. Hill, K.M. Kozek, A. Hucknall, D.R. Smith, A. Chilkoti
JournalACS Photonics
Volume1
Issue10
Pagination974 - 984
Date PublishedMar-10-2015
ISSN2330-4022
Abstract

The widespread use of plasmonic nanorulers (PNRs) in sensing platforms has been plagued by technical challenges associated with the development of methods to fabricate precisely controlled nanostructures with high yield and characterize them with high throughput. We have previously shown that creating PNRs in a nanoparticle–film (NP–film) format enables the fabrication of an extremely large population of uniform PNRs with 100% yield using a self-assembly approach, which facilitates high-throughput PNR characterization using ensemble spectroscopic measurements and eliminates the need for expensive microscopy systems required by many other PNR platforms. We expand upon this prior work herein, showing that the NP–film PNR can be made compatible with aqueous sensing studies by adapting it for use in a transmission localized surface plasmon resonance spectroscopy format, where the coupled NP–film resonance responsible for the PNR signal is directly probed using an extinction measurement from a standard spectrophotometer. We designed slide holders that fit inside standard spectrophotometer cuvettes and position NP–film samples so that the coupled NP–film resonance can be detected in a collinear optical configuration. Once the NP–film PNR samples are cuvette-compatible, it is straightforward to calibrate the PNR in aqueous solution and use it to characterize dynamic, angstrom-scale distance changes resulting from pH-induced swelling of polyelectrolyte (PE) spacer layers as thin as 1 PE layer and also of a self-assembled monolayer of an amine-terminated alkanethiol. This development is an important step toward making PNR sensors more user-friendly and encouraging their widespread use in various sensing schemes.

DOI10.1021/ph500190q
Short TitleACS Photonics